
Policy Adaptation via Language Optimization:
Decomposing Tasks for Few-Shot Imitation

Vivek Myers∗, Bill Chunyuan Zheng∗, Oier Mees, Sergey Levine†, Kuan Fang†
University of California, Berkeley

Abstract: Learned language-conditioned robot policies often struggle to effec-
tively adapt to new real-world tasks even when pre-trained across a diverse set
of instructions. We propose a novel approach for few-shot adaptation to unseen
tasks that exploits the semantic understanding of task decomposition provided by
vision-language models (VLMs). Our method, Policy Adaptation via Language
Optimization (PALO), combines a handful of demonstrations of a task with pro-
posed language decompositions sampled from a VLM to quickly enable rapid
nonparametric adaptation, avoiding the need for a larger fine-tuning dataset. We
evaluate PALO on extensive real-world experiments consisting of challenging un-
seen, long-horizon robot manipulation tasks. We find that PALO is able of con-
sistently complete long-horizon, multi-tier tasks in the real world, outperforming
state of the art pre-trained generalist policies, and methods that have access to the
same demonstrations.1

Keywords: Few-shot Learning, Vision-Language Models, Robot Manipulation

AdaptationPretraining Evaluation
new task

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

References

1

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

References

1

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

Dprior

References

1

VLM M
propose

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

Dprior

ĉ1

ĉ2

...

ĉK

References

1

“put the turnip
in the drawer”

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

Dprior

ĉ1

ĉ2

...

ĉK

References

1

“grasp
drawer”

“pull
open”

“open
gripper”

expert teleoperators

scripted policies

human annotators

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

Dprior

ĉ1

ĉ2

...

ĉK

References

1

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

Dprior

ĉ1

ĉ2

...

ĉK

⇡̃(â | s, ck)
LLCBC

minLbc = kâ� ak2

L(1)

bc

L(2)

bc

L(K)

bc

References

1

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

Dprior

ĉ1

ĉ2

...

ĉK

⇡̃(â | s, ck)
LLCBC

minLbc = kâ� ak2

L(1)

bc

L(2)

bc

L(K)

bc

References

1

“put the turnip in the drawer”

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

Dprior

ĉ1

ĉ2

...

ĉK

⇡̃(â | s, ck)
LLCBC

minLbc = kâ� ak2

L(1)

bc

L(2)

bc

L(K)

bc

J = L(1)

bc + L(2)

bc + . . .+ L(K)

bc

References

1

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

c
⇤ = argmin

ĉ1:K⇠M
min
partitions

(•,•,...,•)

⇥
J
⇤

References

1

c*

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D (1)

Dtarget (2)

⌧1 ⌧2 . . . ⌧N (3)

Dprior (4)

⇡̃(â | s, ck) (5)

LLCBC (6)

minLbc = kâ� ak2 (7)

L(1)

bc (8)

L(2)

bc (9)

L(K)

bc (10)

J = L(1)

bc + L(2)

bc + . . .+ L(K)

bc (11)

J = L(1)

bc + . . .+ L(K)

bc (12)

c
⇤ = argmin

ĉ1:K⇠M
min
partitions

(•,•,...,•)

⇥
J
⇤

References

1

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D (1)

Dtarget (2)

⌧1 ⌧2 . . . ⌧N (3)

Dprior (4)

⇡̃(â | s, ck) (5)

LLCBC (6)

minLbc = kâ� ak2 (7)

L(1)

bc (8)

L(2)

bc (9)

L(K)

bc (10)

J = L(1)

bc + L(2)

bc + . . .+ L(K)

bc (11)

J = L(1)

bc + . . .+ L(K)

bc (12)

⇡̃ (13)

c
⇤ = argmin

ĉ1:K⇠M
min
partitions

(•,•,...,•)

⇥
J
⇤

References

1

c⇤1

c*c⇤2

“move left”

“close gripper”

states actionslanguage

⇡̃(s, ck)

aisi

rollout with optimal language
subtask decomposition .c⇤

c⇤
minLBC = kâi � aik2

âi⇡̃(si, ck)

ck

learn language-conditioned
policy with behavioral cloning freeze policy, optimize over language using a few demonstrations

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D (1)

Dtarget (2)

⌧1 ⌧2 . . . ⌧N (3)

Dprior (4)

⇡̃(â | s, ck) (5)

LLCBC (6)

minLbc = kâ� ak2 (7)

L(1)

bc (8)

L(2)

bc (9)

L(K)

bc (10)

J = L(1)

bc + L(2)

bc + . . .+ L(K)

bc (11)

J = L(1)

bc + . . .+ L(K)

bc (12)

⇡̃ (13)

c
⇤ = argmin

ĉ1:K⇠M
min
partitions

(•,•,...,•)

⇥
J
⇤

References

1

Figure 1: An overview of the PALO algorithm for few-shot adaptation with language. (Left) We
build off a pre-trained policy that has learned to follow low-level language instructions from a large
dataset of expert demonstrations. (Middle) Given a new task and a few expert demonstrations, we
use a VLM to propose candidate decompositions into subtasks. We optimize over these decompo-
sitions jointly with the partitions of trajectories into subtasks, selecting the subtask decomposition
that minimizes the validation error of the learned policy. (Right) At test time, we condition the pre-
trained policy on the selected decomposition to solve the task.

*Equal contribution.
†Equal advising.
1Project webpage: https://palo-website.github.io

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://palo-website.github.io

1 Introduction
Robot learning promises policies that can adapt and generalize to new behaviors. However, in
practice, today’s robotic policies often struggle to effectively finetune for truly new tasks [1, 2, 3,
4, 5]. For example, consider the task of making a salad: while a person could likely follow a new
recipe with only a few examples by remembering the key steps, a robot learning approach may need
many more demonstrations to achieve similar performance, and still recover a more brittle policy.

A key difference that allows humans to learn tasks so quickly is their semantic understanding of the
world. Human have a symbolic representation of the task, such as the names of the ingredients and
the steps to prepare them, rather than a series of low-level actions. This representation enables them
to understand the task at a higher level, mapping directly into low-level behaviors they are already
familiar with [6, 7]. How can we enable robots to quickly learn new tasks through a semantic
understanding of the world?

Language provides a potential bridge between task semantics and low-level control [8]. Recent ad-
vances in large language models (LLMs) and vision-language models (VLMs) have shown promise
in understanding the semantics of language and how it relates to the world [9, 10]. By leveraging
broad training on internet-scale data, these models have achieved remarkable few-shot generaliza-
tion capabilities, learning from only a few examples of text-based tasks. But existing VLMs still
cannot directly control embodied agents without additional finetuning on robotic data.

PALO: Policy Adaptation
via Language Optimization

“put the turnip
in the drawer”

Policy Finetuning
in parameter space

VLM

“Grasp drawer”

“Pull open”

“Open gripper”

R
⇡
�
(
⇡
P
A
L
O
;
⇢
t
a
r
g
e
t)

R
⇡
�
(
⇡̂
;
⇢
p
r
io
r)
+

1H

H
Xi
=
1

D
T
V
(
p
t
a
r
g
e
t (
c
i)
,
p
p
r
io
r (
c
i))

+
p
2
D

K
L
(
p
(
c
1
:K
)
,
p
M
)
+

p
M

+
p

n
log(

M
n
)

n
+
1
/
M

+
1
/
K

+
N

�
2
/
K

D
D

t
a
r
g
e
t

⌧
1

⌧
2

.
.
.

⌧
N

R
eferen

ces

1
search over Language

Pretrained Language Policy

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D (1)

Dtarget (2)

⌧1 ⌧2 . . . ⌧N (3)

Dprior (4)

⇡̃(â | s, ck) (5)

LLCBC (6)

minLbc = kâ� ak2 (7)

L(1)

bc (8)

L(2)

bc (9)

L(K)

bc (10)

J = L(1)

bc + L(2)

bc + . . .+ L(K)

bc (11)

J = L(1)

bc + . . .+ L(K)

bc (12)

⇡̃ (13)

c
⇤ = argmin

ĉ1:K⇠M
min
partitions

(•,•,...,•)

⇥
J
⇤

References

1

new task:

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

Demonstrations

S
u
c
c
e
s
s
R
a
t
e

PALO Finetuning

+

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D (1)

Dtarget (2)

⌧1 ⌧2 . . . ⌧N (3)

Dprior (4)

⇡̃(â | s, ck) (5)

LLCBC (6)

minLbc = kâ� ak2 (7)

L(1)

bc (8)

L(2)

bc (9)

L(K)

bc (10)

J = L(1)

bc + L(2)

bc + . . .+ L(K)

bc (11)

J = L(1)

bc + . . .+ L(K)

bc (12)

⇡̃ (13)

c
⇤ = argmin

ĉ1:K⇠M
min
partitions

(•,•,...,•)

⇥
J
⇤

References

1

only 5 demos needed!

optimize over
parameters

minLBC

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D (1)

Dtarget (2)

⌧1 ⌧2 . . . ⌧N (3)

Dprior (4)

⇡̃(â | s, ck) (5)

LLCBC (6)

minLbc = kâ� ak2 (7)

L(1)

bc (8)

L(2)

bc (9)

L(K)

bc (10)

J = L(1)

bc + L(2)

bc + . . .+ L(K)

bc (11)

J = L(1)

bc + . . .+ L(K)

bc (12)

⇡̃ (13)

c
⇤ = argmin

ĉ1:K⇠M
min
partitions

(•,•,...,•)

⇥
J
⇤

References

1

need >100 demos

Figure 2: PALO enables pre-trained generalist
policies to adapt new tasks with as few as five
demonstrations by searching in language space in-
stead of parameter space.

In this work, we propose Policy Adapta-
tion via Language Optimization (PALO), a
method for exploiting the semantic understand-
ing of VLMs in combination with a pre-
trained robot policy to enable adaptation to
new tasks with only a few demonstrations
(Fig. 1). Past approaches that fine-tune di-
rectly to new demonstrations are often overpa-
rameterized and sample-inefficient, due to the
cost inherent in collecting teleoperated trajecto-
ries [11]. Instead, we use a handful of demon-
strations as a calibration set to guide the decom-
position of a new language task into a sequence
of subtasks that can be used by a language-
conditioned policy. To select this sequence, our
approach samples possible decompositions of
the task from a VLM and chooses the one that
minimizes the validation error of the learned
policy on the calibration set.

Our contribution is a method for using the
structure of language to enable few-shot adap-
tation to novel tasks. The key insight is that in
the few-shot setting, a few demonstrations pro-
vide a better signal for adapting to new tasks
when used to select the right sequence of lan-
guage subtasks with the help of a VLM, rather
than directly fine-tuning the policy parameters
(Fig. 2). Unlike prior work, our approach can
learn unseen, long-horizon behaviors with fewer than 10 demonstrations across a variety of tabletop
manipulation tasks.

2

2 Related Work
Our approach lies at the intersection of few-shot learning and approaches that leverage language and
large pre-trained models for robotics.

Few-shot learning. Broadly speaking, few-shot learning approaches utilize diverse data to enable
rapid test-time adaptation to a new task from a few examples. These techniques have been applied
in various domains, including vision [12, 13, 14], natural language processing [9, 15], and rein-
forcement learning [16, 17]. Frameworks for few-shot learning include optimization-based meta-
learning [18, 19, 20], where a model is trained to quickly fine-tune to new tasks, nonparametric
methods based on particular modeling assumptions such as metric approaches and Gaussian pro-
cesses [21, 22, 23, 24], and in-context learning [9, 25, 26, 27], where a large model is conditioned
on a context to adapt to a new task. Unlike past approaches to few-shot learning in robotics [28, 11],
we show that language can be used to enable nonparametric adaptation without fine-tuning.

Language-conditioned robotic control. While early approaches to instruction-following in
robotics relied on manually designed symbolic representations [29, 30, 31], recent work has fo-
cused on applying deep learning techniques to understand natural language instructions [32, 33].
These approaches use learned behavioral cloning policies on top of language [2, 34, 35], connect
language representations to grounded representations of the environment [36, 37, 38, 39], or use
the compositional structure of language to decompose tasks and plan [40, 41, 42, 43, 44]. Our ap-
proach is the first to enable few-shot adaptation to new demonstrations in robotics by leveraging the
structure of language.

Foundation models and robotics. Large-scale internet pre-training has seen recent success in
the domains of vision and natural language processing [9, 45, 46, 47, 9, 48]. Recent work has
investigated if these models can be trained and/or fine-tuned for downstream robotics tasks [32,
49, 50, 11, 51, 52]. Other work has investigated if these models can be used to provide semantic
knowledge for downstream robot learning pipelines [53, 54, 55, 56, 57, 58, 59]. Our approach falls
into this latter category, but unlike the past works, we perform few-shot adaptation in language-
conditioned robot control using the semantic knowledge in large pre-trained VLMs.

3 Policy Adaptation via Language Optimization
Our goal is to enable a learned language-conditioned robot policy to perform new tasks with only a
few demonstrations. The key insight is that the structure of language can be exploited to enable few-
shot adaptation to new demonstrations in robotics. Fundamentally, few-shot adaptation to new tasks
depends on a policy’s ability to generalize its existing knowledge to correctly fit to new demonstra-
tions. One approach for adapting a learned policy is to directly fine-tune to new demonstrations, but
in robotics settings where expert data collection is costly, this is often infeasible due to overfitting.

We propose Policy Adaptation via Language Optimization (PALO), which instead uses demonstra-
tions of a task that is outside the training distribution with the reasoning capabilities of a pre-trained
vision-language model (VLM) to determine the correct sequence of decomposed subtasks that are
in-distribution for the robot policy. Given a language instruction ℓ, we compute a task decompo-
sition c1:K that is both semantically consistent with the instruction (determined by the VLM) and
feasible in the environment (measured by policy validation loss on expert demonstrations).

3.1 Notation

Formally, we assume a contextual Markov Decision Process (MDP) structure. We have a state space
S, continuous action space A = (0, 1)dA , initial state distribution p0, transition probabilities P , and
free-form language instruction ℓ ∈ L chosen from the language instruction space L. We use the
notation P(X) to denote the set of probability distributions over a space X .

The robot selects the action at ∈ A based on the observed state st ∈ S at each time step t ∈
{1 . . . H} over a finite horizon H to achieve states in Sℓ. We denote a robot policy as a map π(ât |
st, ℓ), which maps the state st and instruction ℓ to a distribution over actions ât. For convenience, we

3

assume actions are selected under a fixed isotropic Gaussian noise model unless otherwise specified,
and will denote the mode of the distribution π(â | st, •) as π(st, •). A robot policy then yields a
distribution over trajectories

(
{(si, ai)}Hi=1, ℓ

)
∼ T ρ

π given a task distribution ρ ∈ P(L).

3.2 Problem Statement

We want to solve out-of-distribution instruction-following tasks involving unseen objects and skills
given only a few demonstrations. For (pre-)training the instruction-following policy we assume
access to a dataset that has been generated using language tasks sampled from some distribution
ρprior ∈ P(L) with an expert policy πβ(â | s, ℓ). For training an instruction-following policy
π̂(s, ℓ), we assume a prior datasetDprior =

{
(τ (i), c

(i)
1:K , ℓ(i))

}Nprior

i=1
for τ (i), ℓ ∼ T ρprior

πβ and additional
hierarchically-decomposed subtask instructions c1:K ∈ LK that are distributed according to p(c1:K |
s0, ℓ) for decomposition size K < H .

A target task is sampled from a separate distribution ρtarget ∈ P(L) which requires interacting with
unseen objects in novel ways, so the policy trained onDprior performs poorly zero-shot. To solve this
new task, we assume there exists an additional dataset Dtarget = ({τ1 . . . τn}, ℓ) for τi ∼ T δℓ

πβ
| s0

with s0 ∼ p0 and ℓ ∼ ρtarget collected by human experts. While a large Dtarget can enable directly
training π(s, ℓ) to solve the target task, we are interested in challenging few-shot scenarios in which
Dtarget only contains a handful of demonstrations (e.g., 5). In this paper, we tackle this challenge
by decomposing the novel target task into a sequence of subtasks that are solvable by the pre-
trained π̃(s, c) using a VLM M. Notably, we do not assume any ground truth labels for the task
decomposition are given, and aim to generate the optimal language decomposition c1:K based on
the unlabeled demonstration dataset Dtarget collected by human operators.

Our approach makes two assumptions about the structure of the target task.

Assumption 1. The target task subtask annotations ci locally match those of the prior dataset, i.e.,
are distributed identically for i ∼ Unif(1 . . . H)

Eℓ∼ρtarget,s0∼p0p(ci | s0, ℓ) ≈ Eℓ∼ρprior,s0∼p0p(ci | s0, ℓ). (1)

Assumption 1 states that even if the overall target tasks in ρtarget are unseen, the low-level manipula-
tion skills (e.g., “close the gripper,” “move the arm right”) will be represented in the policy training.

Assumption 2. The VLMM can approximate the distribution of the subtask annotations c1:K in
the target task, i.e.,

pM(c1:K | s0, ℓ) ≈ p(c1:K | s0, ℓ). (2)

Assumption 2 states that the VLM can propose candidate task decompositions that are consistent
with the instruction ℓ in new scenes. Qualitatively, these assumptions are consistent with recent
advances in robot manipulation training data [5, 51] and embodied reasoning with VLMs [60] and
are empirically validated in our experiments in Section 4 using the BridgeDataV2 dataset [5] and
GPT-4o [46] with prompting described in Appendix F.

In Section 3.6 we show that under these assumptions, our PALO algorithm can achieve low regret
on out-of-distribution tasks, and discuss how violating these assumptions affects performance.

3.3 Task Decomposition with Language

To guide the pre-trained policy π̂ to solve the unseen target task, we decompose the high-level
language instruction ℓ of the target task into a sequence of subtask instructions c1:K = (c1, . . . , cK)
for the K subtasks as a set of language decomposition. Instead of commanding π̂ with the original
instruction ℓ, we use a combination of ℓ and the subtask instructions ck as the input in each subtask
to produce the action as at ← π̃(st, ck). In our methods, we used GPT-4o [46] as a backbone
to generate instruction sets. We denote by M(s0, ℓ) the support of possible task decompositions
sampled from this VLM (see details in Appendix F).

4

“put the turnip in the drawer”

move the
gripper down
towards the
drawer handle

close the gripper
to pick up the
drawer handle

move the gripper
backward to
open the drawer

open
the
gripper

move the gripper right
and down towards the
purple thing

close the
gripper to pick
up the purple
thing

move the gripper
left and forward
towards the
drawer

move the
gripper down
towards the
drawer

open the gripper
to release the
purple thing

ℓ =

cH
1:K =

cL
1:K =

open the drawer pick up the purple thing move the purple thing
to the drawer

place the purple thing
in the drawer

t

Figure 3: A visualization of an example execution of our method on the long-horizon task “put the
beet toy in the drawer.” The VLM deconstructs ℓ into candidate high-level subtasks cH1:K and low-
level subtasks cL1:K and optimizes over the expert trajectories. The optimal cH1:K and cL1:m are chosen
and unrolled in real-world evaluations, which result in successful completion of the task (trajectory
shown in gray).

Aside from the sequential order of the subtasks, the robot needs to decide when to switch to the next
subtask. For this purpose, we introduce an additional variable u = (u1, . . . , uK) ∼ Unif(U) where
U is the space of ordered partitions of {0 . . . H}, so uk denotes the time steps on which the robot
is executing the k-th subtask. Notably, we assume the optimal solution to the target task follows
a fixed structure, i.e., the same subtask sequence c can be used to solve the task, regardless of the
initial state s0. Meanwhile, u can be different in each episode, since the number of steps needed to
complete each subtask depends on s0 as well as stochasticity in the environment and the policy.

3.4 Few-Shot Adaptation through Language Decomposition

For this purpose, we design a simple sampling-based inference algorithm to find the optimal c∗ for
guiding the policy π̃ to solve the target task. Since the resultant action sequence depends on both c
and u, as discussed in Section 3.3, we jointly optimize c and u to minimize a cost function J over
all trajectories in Dtarget:

min
c1:K∈M(s0,ℓ)

∑
τ∈Dtarget

(
min

u1:K∈U
J (c, u, τ)

)
. (3)

To measure how well c and u enable the policy π̃ to reproduce each τ , the cost function is defined
with the mean squared error between the predicted action ât and the ground truth at at each time
step t. More specifically, we evaluate the policy π̃ on the demonstration trajectory given c and u to
compute ât ← π̃(st, cmin{k:t∈uk}). Then the cost function is defined as:

J (c, u, τ) =
K∑

n=1

∑
t∈un

∥∥at − π̃(st, c)
∥∥2. (4)

By minimizing this cost across demonstrations, we compute a decomposition of the task c that would
optimally perform the task by minimizing the loss between the action of the robot and the expert.

3.5 Learning Composable Instruction-Following Primitives

We use language-conditioned behavior cloning [61] to learn a policy π̂(st, ℓ) based on the expert
trajectories of Dprior. To enable conditioning on fine-grained hierarchical language instructions, we

5

factorize π̂ through c1:K :

π̂(â | st, ℓ) =
∑

c1:K∈L
p(c1:K | ℓ)

K∑
k=1

π̃(â | st, ck)p(kt = k) (5)

for the subtask index at time t:

kt = min{k : t ∈ uk, u1:K ∼ Unif(U)}. (6)

We learn parameters θ for π̃θ by minimizing the following behavioral cloning objective:

LBC(θ) = E(st,at,ck,ℓ)∼Dprior

[H∑
t=1

∥∥π̃θ(st, ck)− at
∥∥2]. (7)

The training dataset Dprior is an augmented version of BridgeData [5], a dataset containing a diverse
set of manipulation tasks on common household objects. Details about how the subtask instructions
are generated are discussed in Appendix D.

We algorithmically enhance our training data by using a heuristic generated by the proprioception
of the robot and language context, which generates the low-level instructions. The labeled language
instruction is passed into a language model to obtain manipulation keywords, and we combine the
keywords with the proprioceptive information within that time span including translation, rotation,
and gripper movement into coherent language commands.

To aid in the language decomposition, each ci is further partitioned into a high-level component cHi
and a low-level component cLi . Our full implementation is described in Appendix D.

3.6 Analysis of PALO

Our theoretical results study the regret of this approach on out-of-distribution tasks in ρtarget, showing
that it trades off the performance of the pre-trained policy on ρprior and the performance of the VLM
M in accurately modeling the hierarchical language decomposition p(c1:K) in ρtarget. We define
regret with respect to the expert policy πβ and a given task distribution in terms of the MSE:

Rπβ
(π; ρ) = ET ρ

πβ

[
1

H
√
dA

H∑
t=1

∥∥π(st, ℓ)− πβ(st, ℓ)
∥∥2]. (8)

Theorem 3.7. The (out-of-distribution) regret of PALO on ρtarget can be bounded as:

Rπβ
(πPALO; ρtarget) ≤ Rπβ

(π̂; ρprior) + E
[
DTV

(
ptarget(ckt), pprior(ckt)

)]
+
(
2DKL

[
p(c1:K), pM

])1/2
+

√
M+
√

n log(Mn)

n + 1/M + 1/K +N−2/K

(9)

where πPALO is the result of Algorithm 1, π̂(st, ℓ) is the policy trained on Dprior (Section 3.5), and
t ∼ Unif(1 . . . H).

The proof is in Appendix A. Theorem 3.7 shows that in the limit as N,M →∞, we can decompose
the out-of-distribution regret of PALO into a sum of the in-distribution regret of the pre-trained
policy, and the performance of the VLM in accurately decomposing language tasks:

Rπβ
(πPALO; ρtarget) ≲ Rπβ

(π̂; ρprior)︸ ︷︷ ︸
pre-training MSE

+
(
2EρtargetDKL

[
p(c1:K)

∥∥pM(c1:K)
])1/2︸ ︷︷ ︸

VLM accuracy

+ E
[
DTV

(
ptarget(ckt), pprior(ckt)

)]︸ ︷︷ ︸
local marginal conformity

. (10)

Viewing the VLM accuracy and local marginal conformity terms as the extent to which Assump-
tions 1 and 2 are satisfied, we can see that under these conditions, Theorem 3.7 lets us directly relate
the performance of the pre-trained policy π̂ on the training data Dprior to the performance of the
PALO algorithm on out-of-distribution tasks.

6

Algorithm 1 Policy Adaptation via Language Optimization (PALO)
Require: a VLMM, pre-trained instruction-following policy π(â | st, c),

number of candidate decompositions to sample M , optimization steps N
Input: new task described by ℓ with n expert demonstrations Dtarget collected manually
Output: policy π̂(· | st) adapted to the new task ℓ

1: for i = 1 to M do
2: c

(i)
1:K ∼M(s0, ℓ)

3: for j = 1 to N do
4: u

(i,j)
1:K ∼ Unif(U)

5: ĉ1:K ← argminc1:K∈{c(i)}M
i=1

minu∈{u(i,j)}N
j=1
J (c1:K , u, τ) (eq. 4)

6: πPALO(â | st, ℓ)← π(â | st, ĉkt)
7: return πPALO.

Instruction

“put the marker into the
box while aligning it”

“put the spoon into the
cleaner while aligning it”

“put the beet toy/purple
thing into the drawer”

“pry out the pot in the
drawer using the ladle”

“make a salad bowl with
corn and mushroom”

“pour the contents of the
scoop into the bowl”

“sweep the mints to the
right after putting the
mushroom in the bowl”

“sweep the skittles into the
bin after putting the
mushroom in the container”

Instruction
t = 0 t = 0t = 180 t = 180

Figure 4: Sample rollouts using PALO on unseen testing tasks.

3.8 System Details

We use a ResNet-34 architecture [62] to model the policy π(a | s, c), where c = (cH , cL) is a
concatenation of high- and low-level instructions. The instruction c = (cL, cH) is passed through
a frozen MUSE model [63] to obtain embeddings before being fused into the ResNet with FiLM
layers [64].

Architecture details are presented in Appendix C, and our overall few-shot adaptation algorithm is
shown in Algorithm 1.

4 Experiments
In this section, we show that PALO can better adapt to long-horizon and out-of-distribution tasks
from a few expert demonstrations than existing learned language-conditioned manipulation poli-
cies (both zero-shot and when finetuned to demonstrations), as well as a nonparametric few-shot
adaptation method. We also show that all the components of PALO are necessary through ablation
studies.

4.1 Experimental Setup

We evaluate our method on a variety of long-horizon and/or unseen tasks across four scenes from
the Bridge tabletop manipulation setup [5]. These tasks involve manipulating new combinations of
objects and behaviors unseen in the training data to accomplish long-horizon tasks, such as making
a salad or pouring into a bowl. For each task, we collect a set of five expert demonstrations Dtarget
for few-shot learning.

Besides separating the tasks by scenes, we can also separate the tasks into 4 long-horizon tasks
(put in, salad, sweep mints, sweep skittles) and 4 unseen-skills tasks (pry away, pour spoon, rotate
marker, rotate spoon). Successful rollouts of the studied tasks are presented in Fig. 4. Details about
the evaluation scenes, tasks, and objects involved are presented in Appendix B.

7

Drawer Bowl Sweep Rotation

0

0.2

0.4

0.6

0.8

S
u
cc
es
s
R
a
te

Comparison of Methods

PALO FT-Octo FT-LCBC RT-2-X Octo GRIF VINN LCBC

Figure 5: Comparison of PALO with baseline methods on different scenes with one standard error.

4.2 Baselines

We compare against the following baselines:

Octo [11]: A general-purpose transformer-based robot manipulation policy with diffusion action
head. In our implementation our policy is tuned on only BridgeData.

GRIF [36]: A language-conditioned robot control method that uses pre-trained CLIP [45] repre-
sentations to connect language instructions to goals for the policy to reach. We pretrain our CLIP
network by sampling images and captions from BridgeData as well.

RT-2-X [32]: A language-conditioned robot control model with 55B parameters that transfers
knowledge from internet-scale pre-training to manipulation zero-shot.

LCBC [61]: Language-conditioned imitation learning using a ResNet backbone and pretrained
MUSE [63] embeddings.

VINN [65]: Using k-Nearest Neighbor to select actions from the training data based on similarity
between the task representations of the observation and training data. We used GRIF’s CLIP
encoder for the representations used to calculate similarity scores.

FT-Octo: Octo fine-tuned on the few-shot demonstrations. We freeze the policy network and fine-
tune the action head (see Appendix C.2 for details).

FT-LCBC: Similar to FT-Octo, but fine-tuning LCBC on the few-shot demonstrations.

Across eight different tasks, our PALO method yielded a success rate of 71.3%, while the best
zero-shot policies only resulted in a success rate of 26.3%. While most of the zero-shot methods
degrade when the task became increasingly more out-of-distribution for the pretrained policy (for
example, tasks in the “salad” scene achieved a 30% overall performance across the 4 baseline models
while pouring from scoop only achieved 12% performance across the models), our method remained
effective, with all 8 tasks performing at a success rate of 50% or better.

The FT-Octo and FT-LCBC baselines allow us to compare the nonparametric adaptation of
PALO to conventional parametric finetuning. While Octo trained only on BridgeData achieved
moderate zero-shot success, finetuning on only five demonstrations actually worsened performance,
likely due to overfitting. The FT-LCBC baseline did benefit from finetuning, but still failed to ever
exceed 30% success rate across all tasks. We observe that the small size of trajectories made these
datasets an unfavorable candidate for finetuning, as any variance brought by the human controller
may be amplified and cause unfavorable movements during evaluation.

The nonparametric VINN baseline performed well on the rotation tasks (45% success rate), but
failed to achieve greater than 5% success rate on the other tasks.

8

Figure 6: An execution of our method on the task “pour the contents of the scoop into the bowl.”
Full breakdown of task and instructions can be seen at Appendix G

Drawer Bowl Sweep Rotation
0

0.2

0.4

0.6

0.8

S
u
cc
es
s
R
a
te

Ablation Study

PALO No c
H No c

L Fixed Times Zero-shot No VLM

Figure 7: Ablation study of PALO on different scenes, plotted with one standard error.

4.3 Ablations

We ablate the following components of our method in Fig. 7:

Ours: Our full PALO approach
No cH : No high-level cH conditioning for the learned policy via masking. During inference the

high level instructions are replaced by a zero-embedding vector.
No cL: No low-level cL instruction conditioning via masking. Similar to masking out cH , we use a

zero-embedding vector to represent low level instructions in inference.

Fixed Times: Use fixed u =
[
H
k ,

2H
k , . . . , (k−1)H

k

]
in each trajectory to evaluate Eq. (3)

Zero-Shot Decomposition: Generate c zero-shot without expert demonstrations.
No VLM: No VLM decomposition proposals by using only ℓ with our policy.

These approaches are discussed in more depth in Appendix E. The aggregated results in Fig. 7 show
that all the components of the PALO method are needed for it to work effectively.

While the sweeping and rotation scenes gave comparable performance with masked high level lan-
guage instructions (No cH), the ablated policy’s performance deteriorated in Drawer and Bowl,
which involved more unfamiliar items for the pretrained policy. Conversely, masking low level
instructions (No cL) uniformly worsened performance across all scenes.

Omitting the optimization over the subtask parition indicies (Fixed Times) in u substantially wors-
ened performance. Likewise, generating zero-shot decompositions c1:K (Zero-Shot Decomposi-
tion) without expert demonstrations worsened performance. Completely removing the adaptation to
the new task (No VLM) resulted in the worst performance.

9

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

Number of Demonstrations

Su
cc

es
s

R
at

e

Scaling of PALO and Finetuning Approaches

PALO (Ours)
FT-Octo
FT-LCBC

Figure 8: Performance of PALO with 5 demonstrations compared to finetuning the Octo model on
different number of demonstrations, plotted with one standard error. Finetuning Octo requires 15x
more demonstrations to achieve comparable performance to PALO at few-shot task adaptation, and
LCBC requires 25x more demonstrations.

Figure 9: Spatial reasoning failure occurred when masking out low level instruction. The task was
to “sweep the mints using the towel.” Due to the presence of the pot and the mushroom, being both
strong priors within BridgeData, the policy chose not to follow the high level instruction.

4.4 Scaling with Number of Target Demonstrations

We study the scaling of our nonparametric method and a parametric finetuning approach with > 5
demonstrations of the skittle sweeping task in Fig. 8. We observe that while Policy Adaptation
via Language Optimization achieves the best performance (80%) using any number of demonstra-
tions, the Octo finetuning baseline needs at least 80 expert demonstrations to achieve comparable
performance, while the LCBC baseline needs at least 120 demonstrations.

4.5 Qualitative Results

In this section, we evaluate on the steps in which our methods complete the tasks in the experiment,
and potential failure modes that could affect the performance of our methods.

Task execution. In Fig. 3, we show PALO successfully executes the task “put the beet toy in the
drawer” with the language plans by executing the correct behavior in long-horizon. In Fig. 6, we
show an additional successful execution of a task, “pour the contents of the scoop into the bowl.”

Failure cases. We record our failure cases in both full setting as well as in ablation. We observe
that while the full method is robust to potentially logically unsound instructions generated by the
VLM, failures in reasoning and execution occur when we ablate our methods. Fig. 9 and Fig. 10 are
two examples in which reasoning break down in ablations. More details can be found in Appendix G

5 Discussion
We introduced PALO, an approach for few-shot adaptation to unseen tasks that exploits the semantic
understanding of task decomposition provided by vision-language models. In extensive real world
experiments, we find that PALO is able to use language to adapt to unseen long-horizon robot
manipulation tasks across a wide range of tabletop setups.

10

Figure 10: Grounding failure occurred when high level instruction is masked out. While the low
level instruction “move the gripper left” correctly predicts the next reasonable action, masking out
the context of the subtask “put the mushroom in the bowl” causes the policy to overshoot its trajec-
tory.

Limitations and Future Work. While PALO achieves strong performance, it has some limi-
tations. We assume the dataset has a consistent format of high-level language labels and proprio-
ception, making it more challenging to generalize our low-level heuristic generation on drastically
different embodiments. The discrete optimization over subtask time steps may also scale poorly
with the number of subtasks and time steps. Future work could explore more efficient optimization
methods for this problem.

Acknowledgements
This research was partly supported by AFOSR FA9550-22-1-0273, ARO W911NF-21-1-0097, NSF
IIS-2246811, and the DoD through the NDSEG Fellowship Program.

References
[1] A. Xie, L. Lee, T. Xiao, and C. Finn. Decomposing the Generalization Gap in Imitation

Learning for Visual Robotic Manipulation, July 2023.

[2] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data. In
Robotics: Science and Systems XVII. Robotics: Science and Systems Foundation, July 2021.
ISBN 978-0-9923747-7-8. doi:10.15607/RSS.2021.XVII.047.

[3] O. Mees, L. Hermann, and W. Burgard. What matters in language conditioned robotic imitation
learning over unstructured data. IEEE Robotics and Automation Letters (RA-L), 7(4):11205–
11212, 2022.

[4] O. Mees and W. Burgard. Composing pick-and-place tasks by grounding language. In Pro-
ceedings of the International Symposium on Experimental Robotics (ISER), 2021. URL http:

//ais.informatik.uni-freiburg.de/publications/papers/mees21iser.pdf.

[5] H. R. Walke, K. Black, T. Z. Zhao, Q. Vuong, C. Zheng, P. Hansen-Estruch, A. W. He, V. My-
ers, M. J. Kim, M. Du, A. Lee, K. Fang, C. Finn, and S. Levine. BridgeData V2: A Dataset for
Robot Learning at Scale. In Conference on Robot Learning, pages 1723–1736. PMLR, Aug.
2023. URL https://openreview.net/forum?id=f55MlAT1Lu.

[6] B. M. Lake, T. Linzen, and M. Baroni. Human few-shot learning of compositional instructions.
In CogSci. arXiv, 2019. doi:10.48550/arXiv.1901.04587.

[7] K. Ellis. Human-like Few-Shot Learning via Bayesian Reasoning over Natural Language. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
2023.

[8] J. Lin, Y. Du, O. Watkins, D. Hafner, P. Abbeel, D. Klein, and A. Dragan. Learning to model
the world with language. In Forty-First International Conference on Machine Learning, June
2024.

11

http://dx.doi.org/10.15607/RSS.2021.XVII.047
http://ais.informatik.uni-freiburg.de/publications/papers/mees21iser.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/mees21iser.pdf
https://openreview.net/forum?id=f55MlAT1Lu
http://dx.doi.org/10.48550/arXiv.1901.04587

[9] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language Models are Few-Shot Learners, 2020.

[10] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari, A. Purohit,
M. Ryoo, V. Sindhwani, et al. Socratic Models: Composing Zero-Shot Multimodal Reasoning
with Language, May 2022.

[11] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,
C. Xu, J. Luo, T. Kreiman, Y. Tan, L. Y. Chen, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh,
C. Finn, and S. Levine. Octo: An open-source generalist robot policy. In Proceedings of
Robotics: Science and Systems, 2024.

[12] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang. A Closer Look at Few-shot
Classification. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. ICLR, 2019.

[13] O. Vinyals, C. Blundell, T. Lillicrap, koray kavukcuoglu, and D. Wierstra. Matching Networks
for One Shot Learning. In Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016.

[14] Y. Song, T. Wang, P. Cai, S. K. Mondal, and J. P. Sahoo. A Comprehensive Survey of Few-
shot Learning: Evolution, Applications, Challenges, and Opportunities. ACM Comput. Surv.,
55(13s):271:1–271:40, 2023. doi:10.1145/3582688.

[15] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Milli-
can, M. Reynolds, R. Ring, E. Rutherford, S. Cabi, T. Han, Z. Gong, et al. Flamingo: A Visual
Language Model for Few-Shot Learning. In NeurIPS, 2022.

[16] A. Ghadirzadeh, X. Chen, P. Poklukar, C. Finn, M. Björkman, and D. Kragic. Bayesian Meta-
Learning for Few-Shot Policy Adaptation Across Robotic Platforms. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IROS 2021, Prague, Czech Republic,
September 27 - Oct. 1, 2021, pages 1274–1280. IEEE, 2021. doi:10.1109/IROS51168.2021.
9636628.

[17] Y. Guo, R. Du, Y. Dong, T. Hospedales, Y.-Z. Song, and Z. Ma. Task-aware Adap-
tive Learning for Cross-domain Few-shot Learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1590–1599, 2023. URL https:

//openaccess.thecvf.com/content/ICCV2023/html/Guo_Task-aware_Adaptive_

Learning_for_Cross-domain_Few-shot_Learning_ICCV_2023_paper.html.

[18] C. Finn, P. Abbeel, and S. Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks. In Proceedings of the 34th International Conference on Machine Learning, pages
1126–1135. PMLR, July 2017. URL https://proceedings.mlr.press/v70/finn17a.

html.

[19] A. Nichol, J. Achiam, and J. Schulman. On First-Order Meta-Learning Algorithms. CoRR,
abs/1803.02999, 2018.

[20] D. Chen, L. Wu, S. Tang, X. Yun, B. Long, and Y. Zhuang. Robust Meta-learning with Sam-
pling Noise and Label Noise via Eigen-Reptile. In Proceedings of the 39th International Con-
ference on Machine Learning, pages 3662–3678. PMLR, June 2022.

[21] J. Snell, K. Swersky, and R. Zemel. Prototypical Networks for Few-shot Learning. In Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[22] M. Sendera, J. Tabor, A. Nowak, A. Bedychaj, M. Patacchiola, T. Trzcinski, P. aw Spurek,
and M. Zieba. Non-Gaussian Gaussian Processes for Few-Shot Regression. In Advances in
Neural Information Processing Systems, volume 34, pages 10285–10298. Curran Associates,
Inc., 2021.

12

http://dx.doi.org/10.1145/3582688
http://dx.doi.org/10.1109/IROS51168.2021.9636628
http://dx.doi.org/10.1109/IROS51168.2021.9636628
https://openaccess.thecvf.com/content/ICCV2023/html/Guo_Task-aware_Adaptive_Learning_for_Cross-domain_Few-shot_Learning_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Guo_Task-aware_Adaptive_Learning_for_Cross-domain_Few-shot_Learning_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Guo_Task-aware_Adaptive_Learning_for_Cross-domain_Few-shot_Learning_ICCV_2023_paper.html
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html

[23] P. Tighineanu, L. Grossberger, P. Baireuther, K. Skubch, S. Falkner, J. Vinogradska, and
F. Berkenkamp. Scalable Meta-Learning with Gaussian Processes. In Proceedings of The 27th
International Conference on Artificial Intelligence and Statistics, pages 1981–1989. PMLR,
Apr. 2024.

[24] Z. Wang, Z. Miao, X. Zhen, and Q. Qiu. Learning to Learn Dense Gaussian Processes for
Few-Shot Learning. In Advances in Neural Information Processing Systems, volume 34, pages
13230–13241. Curran Associates, Inc., 2021.

[25] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma. An Explanation of In-context Learning as
Implicit Bayesian Inference, July 2022.

[26] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, L. Li, and Z. Sui. A Survey
for In-context Learning. CoRR, abs/2301.00234, 2023. doi:10.48550/ARXIV.2301.00234.

[27] J. Y. Zhu, C. G. Cano, D. V. Bermudez, and M. Drozdzal. InCoRo: In-Context Learning for
Robotics Control with Feedback Loops, Feb. 2024.

[28] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. RT-1: Robotics Transformer for Real-World Control at Scale,
Aug. 2023.

[29] T. Winograd. Procedures as a representation for data in a computer program for understanding
natural language, 1971.

[30] M. Skubic, D. Perzanowski, S. Blisard, A. C. Schultz, W. Adams, M. D. Bugajska, and D. P.
Brock. Spatial language for human-robot dialogs. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 34:154–167, 2004.

[31] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller, and N. Roy. Understanding
Natural Language Commands for Robotic Navigation and Mobile Manipulation. Proceedings
of the AAAI Conference on Artificial Intelligence, 25(1):1507–1514, Aug. 2011. ISSN 2374-
3468, 2159-5399. doi:10.1609/aaai.v25i1.7979.

[32] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, P. Florence, C. Fu, M. G. Arenas, K. Gopalakrishnan, K. Han, et al. RT-2:
Vision-Language-Action Models Transfer Web Knowledge to Robotic Control. In Conference
on Robot Learning. arXiv, 2023. doi:10.48550/arXiv.2307.15818.

[33] M. Shridhar, L. Manuelli, and D. Fox. CLIPort: What and Where Pathways for Robotic
Manipulation, Sept. 2021.

[34] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch, T. Armstrong, and P. Florence.
Interactive Language: Talking to Robots in Real Time, Oct. 2022.

[35] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. CALVIN: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics and
Automation Letters (RA-L), 7(3):7327–7334, 2022.

[36] V. Myers, A. W. He, K. Fang, H. R. Walke, P. Hansen-Estruch, C.-A. Cheng, M. Jalobeanu,
A. Kolobov, A. Dragan, and S. Levine. Goal Representations for Instruction Following: A
Semi-Supervised Language Interface to Control. In Proceedings of The 7th Conference on
Robot Learning, pages 3894–3908. PMLR, Dec. 2023.

[37] K. Black, M. Nakamoto, P. Atreya, H. Walke, C. Finn, A. Kumar, and S. Levine. Zero-Shot
Robotic Manipulation with Pretrained Image-Editing Diffusion Models, Oct. 2023.

[38] F. Liu, K. Fang, P. Abbeel, and S. Levine. MOKA: Open-Vocabulary Robotic Manipulation
through Mark-Based Visual Prompting. In Robotics: Science and Systems. arXiv, Mar. 2024.
doi:10.48550/arXiv.2403.03174.

13

http://dx.doi.org/10.48550/ARXIV.2301.00234
http://dx.doi.org/10.1609/aaai.v25i1.7979
http://dx.doi.org/10.48550/arXiv.2307.15818
http://dx.doi.org/10.48550/arXiv.2403.03174

[39] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. VoxPoser: Composable 3D Value
Maps for Robotic Manipulation with Language Models, Nov. 2023.

[40] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, et al. Do As I Can, Not As I Say: Grounding Language in Robotic
Affordances, Aug. 2022.

[41] M. Attarian, A. Gupta, Z. Zhou, W. Yu, I. Gilitschenski, and A. Garg. See, Plan, Predict:
Language-guided Cognitive Planning with Video Prediction, Oct. 2022.

[42] S. Belkhale, T. Ding, T. Xiao, P. Sermanet, Q. Vuong, J. Tompson, Y. Chebotar, D. Dwibedi,
and D. Sadigh. RT-H: Action Hierarchies Using Language, Mar. 2024.

[43] L. X. Shi, Z. Hu, T. Z. Zhao, A. Sharma, K. Pertsch, J. Luo, S. Levine, and C. Finn. Yell
At Your Robot: Improving On-the-Fly from Language Corrections. CoRR, abs/2403.12910,
2024. doi:10.48550/ARXIV.2403.12910.

[44] O. Mees, J. Borja-Diaz, and W. Burgard. Grounding language with visual affordances over
unstructured data. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), 2023.

[45] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In Proceedings of the 38th International Conference on Machine Learning. arXiv, Feb.
2021. doi:10.48550/arXiv.2103.00020.

[46] OpenAI. GPT-4 Technical Report, Mar. 2023.

[47] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar, J. Hamburger, H. Jiang,
M. Liu, X. Liu, M. Martin, T. Nagarajan, I. Radosavovic, S. K. Ramakrishnan, F. Ryan,
et al. Ego4D: Around the World in 3,000 Hours of Egocentric Video. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). arXiv, Mar.
2022. doi:10.48550/arXiv.2110.07058.

[48] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, et al. On the Opportunities and Risks of Foundation Models,
July 2022.

[49] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu,
and L. Fan. VIMA: General Robot Manipulation with Multimodal Prompts, May 2023.

[50] R. Shah, R. Martı́n-Martı́n, and Y. Zhu. MUTEX: Learning Unified Policies from Multimodal
Task Specifications. In Conference on Robot Learning. arXiv, 2023. doi:10.48550/arXiv.2309.
14320.

[51] O. X.-E. Collaboration, A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee,
A. Pooley, A. Gupta, A. Mandlekar, et al. Open X-Embodiment: Robotic Learning Datasets
and RT-X Models, May 2024.

[52] R. Doshi, H. Walke, O. Mees, S. Dasari, and S. Levine. Scaling cross-embodied learn-
ing: One policy for manipulation, navigation, locomotion and aviation. arXiv preprint
arXiv:2408.11812, 2024.

[53] T. Yu, T. Xiao, J. Tompson, A. Stone, S. Wang, A. Brohan, J. Singh, C. Tan, D. M, J. Peralta,
et al. Scaling Robot Learning with Semantically Imagined Experience. In Robotics: Science
and Systems XIX, Daegu, Republic of Korea, July 10-14, 2023, 2023. doi:10.15607/RSS.2023.
XIX.027.

14

http://dx.doi.org/10.48550/ARXIV.2403.12910
http://dx.doi.org/10.48550/arXiv.2103.00020
http://dx.doi.org/10.48550/arXiv.2110.07058
http://dx.doi.org/10.48550/arXiv.2309.14320
http://dx.doi.org/10.48550/arXiv.2309.14320
http://dx.doi.org/10.15607/RSS.2023.XIX.027
http://dx.doi.org/10.15607/RSS.2023.XIX.027

[54] Q. Chen, S. Kiami, A. Gupta, and V. Kumar. GenAug: Retargeting behaviors to unseen situa-
tions via Generative Augmentation. In Robotics: Science and Systems XIX. Robotics: Science
and Systems Foundation, July 2023. ISBN 978-099-237-4-7-9-2. doi:10.15607/RSS.2023.
XIX.010.

[55] C. Huang, O. Mees, A. Zeng, and W. Burgard. Audio visual language maps for robot nav-
igation. In Proceedings of the International Symposium on Experimental Robotics (ISER),
2023.

[56] J. Zhang, K. Pertsch, J. Zhang, and J. J. Lim. SPRINT: Scalable Policy Pre-Training via
Language Instruction Relabeling, June 2023. URL http://arxiv.org/abs/2306.11886.

[57] W. Chen, O. Mees, A. Kumar, and S. Levine. Vision-language models provide promptable
representations for reinforcement learning. arXiv preprint arXiv:2402.02651, 2024.

[58] D. Shah, B. Osinski, B. Ichter, and S. Levine. LM-Nav: Robotic Navigation with Large Pre-
Trained Models of Language, Vision, and Action. In Conference on Robot Learning. arXiv,
2022. doi:10.48550/arXiv.2207.04429.

[59] C. Huang, O. Mees, A. Zeng, and W. Burgard. Visual language maps for robot navigation. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2023.

[60] M. Kwon, H. Hu, V. Myers, S. Karamcheti, A. Dragan, and D. Sadigh. Toward Grounded Com-
monsense Reasoning. 2022 International Conference on Robotics and Automation (ICRA),
Feb. 2024.

[61] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. B. Amor. Language-
conditioned imitation learning for robot manipulation tasks. Advances in Neural Information
Processing Systems, 33:13139–13150, 2020.

[62] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, June
2016. doi:10.1109/CVPR.2016.90.

[63] Y. Yang, D. Cer, A. Ahmad, M. Guo, J. Law, N. Constant, G. H. Abrego, S. Yuan, C. Tar, Y.-
H. Sung, B. Strope, and R. Kurzweil. Multilingual Universal Sentence Encoder for Semantic
Retrieval. In ACL. arXiv, 2020. doi:10.48550/arXiv.1907.04307.

[64] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville. FiLM: Visual Reasoning with a
General Conditioning Layer. In Proceedings of the AAAI Conference on Artificial Intelligence.
arXiv, 2018. doi:10.1609/AAAI.V32I1.11671.

[65] J. Pari, N. M. M. Shafiullah, S. P. Arunachalam, and L. Pinto. The Surprising Effectiveness
of Representation Learning for Visual Imitation. In Robotics: Science and Systems XVIII.
Robotics: Science and Systems Foundation, June 2022. ISBN 978-0-9923747-8-5. doi:10.
15607/RSS.2022.XVIII.010.

[66] O. Catoni. A PAC-Bayesian approach to adaptive classification, 2004.

[67] P. Alquier. User-friendly Introduction to PAC-Bayes Bounds. Foundations and Trends®
in Machine Learning, 17(2):174–303, 2024. ISSN 1935-8237, 1935-8245. doi:10.1561/
2200000100.

[68] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, Nov. 1984. ISSN
0001-0782, 1557-7317. doi:10.1145/1968.1972.

[69] I. Csiszár and J. Körner. Information Theory: Coding Theorems for Discrete Memoryless
Systems. Cambridge University Press, June 2011. ISBN 978-1-139-49998-9.

15

http://dx.doi.org/10.15607/RSS.2023.XIX.010
http://dx.doi.org/10.15607/RSS.2023.XIX.010
http://arxiv.org/abs/2306.11886
http://dx.doi.org/10.48550/arXiv.2207.04429
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.48550/arXiv.1907.04307
http://dx.doi.org/10.1609/AAAI.V32I1.11671
http://dx.doi.org/10.15607/RSS.2022.XVIII.010
http://dx.doi.org/10.15607/RSS.2022.XVIII.010
http://dx.doi.org/10.1561/2200000100
http://dx.doi.org/10.1561/2200000100
http://dx.doi.org/10.1145/1968.1972

[70] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, Mar. 1963. ISSN 0162-1459. doi:10.1080/
01621459.1963.10500830.

[71] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization, Jan. 2017.

A Proof of Theorem 3.7
Theorem 3.7. The (out-of-distribution) regret of PALO on ρtarget can be bounded as:

Rπβ
(πPALO; ρtarget) ≤ Rπβ

(π̂; ρprior) + E
[
DTV

(
ptarget(ckt), pprior(ckt)

)]
+
(
2DKL

[
p(c1:K), pM

])1/2
+

√
M+
√

n log(Mn)

n + 1/M + 1/K +N−2/K

(9)

where πPALO is the result of Algorithm 1, π̂(st, ℓ) is the policy trained on Dprior (Section 3.5), and
t ∼ Unif(1 . . . H).

Proof. We will first consider the empirical regret of the MLE estimate of c1:K , and relate it to in-
distribution regret of π̃ using PAC techniques (see Catoni [66], Alquier [67]). We will then bound the
remaining error due to the approximations made by the PALO algorithm and this empirical regret.

Recall our definition of regret:

Rπβ
(π; ρ) = ET ρ

πβ

[
1

H
√
dA

H∑
t=1

∥∥π(st, ℓ)− πβ(st, ℓ)
∥∥2]. (from eq. 8)

We can also define an empirical target regret REMP measuring the fit of some c ∈ LK to the target
distribution ρtarget in terms of Eq. (4):

REMP(c1:K) = EDtarget∼ρtarget

[
1

H
√
dA

∑
τ∈Dtarget

min
u1:K

J (c1:K , u1:K , τ)

]
(11)

where J is the cost function in Eq. (4). PALO selects cPALO = argminc1:K∈LK R̂EMP(c1:K) to
minimize an approximation of this quantity for samples u(1), . . . , u(N) ∼ Unif(U):

R̂EMP(c1:K) = EDtarget∼ρtarget

[
1

H
√
dA

∑
τ∈Dtarget

min
i∈{1...N}

J (c1:K , u(i), τ)

]
. (12)

We will also define a distributional notion of conditional regret for our analysis:

R̃πβ
(π̃ | s0, ℓ, c1:K) = Eτ∼T s0

πβ

[
1

H
√
dA

min
u1:K∈U

J (c1:K , u1:K , τ)

]
. (13)

We now make use of the following PAC result [68, 67], which follows from Hoeffding’s inequality:

Lemma A.1 (Alquier [67, Theorem 1.2]). Let H be a class of functions f : X → [0, 1] with
|H| = M , and let ρ ∈ P(X) be an arbitrary data distribution. Further, suppose D is a sample of
size n drawn i.i.d. from ρ. Then, for any ε ∈ (0, 1), we have

Pr

(
∀f ∈ H, Ex∼ρ[f(x)]︸ ︷︷ ︸

generalization risk

≤ Ex∼D[f(x)]︸ ︷︷ ︸
empirical risk

+
√

logM−log ε
2n

)
≥ 1− ε. (14)

Taking X to be the space of trajectories and H = M(s0, ℓ) for f(c) = minu J (c, u, τ), we can
apply Lemma A.1 to the empirical regret REMP in Eq. (11) to obtain (for any ε ∈ (0, 1))

Pr

(
∀c1:K ∈M(s0, ℓ), Rπβ

(π̂ | s0, ℓ, c1:K) ≤ REMP (c1:K) +
√

logM−log ε
2n

)
≥ 1− ε. (15)

16

http://dx.doi.org/10.1080/01621459.1963.10500830
http://dx.doi.org/10.1080/01621459.1963.10500830

Taking cPALO to be the output of the PALO algorithm, we can relate the true regret of PALO on the
current task (left) to its empirical regret (right):

Pr

(
Rπβ

(π̂ | s0, ℓ, cPALO) ≤ REMP (cPALO) +
√

logM−log ε
2n

)
≥ 1− ε. (16)

Since regret is bounded by 1, we can convert to an expectation:

EDtarget

[
Rπβ

(π̂ | s0, ℓ, cPALO)
]
≤ EDtarget

[
REMP (cPALO)

]
+

√
logM−log ε

2n + ε.

Lemma A.2. Suppose u, u′ ∼ Unif(U) are i.i.d. samples from a uniform distribution over the
ordered K-partitions U of {1 . . . H}. For any ε ∈ [0, 1/K], we have

Pr
(∑K

k=1|uk ∩ u′
k| ≤ Hε

)
≤ e−2H(1

K −ε)2 .

Lemma A.3. There exists an ε ∈ [0, 1/K] such that

ε+ e−2H(1
K −ε)2 ≤ 1/K +N−2/K . (17)

Since Algorithm 1 (line 4) only samples N values for u instead of the full space for the min in
Eq. (11), we must separately consider the degree of suboptimality in the decomposition cPALO relative
to the optimal c∗ = argminc∈M(s0,ℓ) REMP(c) that results from our approach to determine the effect
of N on the final bound. Applying Lemma A.2, we can say:

EDtarget

[
R̃πβ

(π̂ | s0, ℓ, cPALO)
]

≤ EDtarget

[
REMP (cPALO)

]
+
√

logM−log ε
2n

≤ EDtarget

[
REMP (c

∗)
]
+
√

logM−log ε
2n + ε+ e−2H(1

K −ε)2

≤ EDtarget

[
REMP (c

∗)
]
+
√

logM−log ε
2n + 1/K +N−2/K .

For ε =
√
M/n, we get

EDtarget

[
Rπβ

(π̂ | s0, ℓ, cPALO)
]

≤ EDtarget

[
REMP (c

∗)
]
+

√
M +

√
n log(Mn)

n
+ 1/K +N−2/K . (18)

So, we have related the true regret of PALO on the current task (left) to its empirical regret in the
limit of infinite samples (right). All that remains is to compute the empirical regret, for which we
make use of the following lemmas.

Lemma A.4. Denote the true (unobserved) target decomposition as c1:K . We can relate the empir-
ical regret of the optimal PALO solution c∗ to the empirical regret of the true decomposition.

EDtarget

[
REMP (c

∗)
]
≤ EDtarget

[
REMP (c1:K) +DTV

(
p(c1:K), pM(c1:K)

)]
+ 1/M

Lemma A.5. The empirical regret of π̃ can be bounded for i ∼ Unif(1 . . .K) as

EDtarget

[
REMP (c1:K)

]
≤ Rπβ

(π̂; ρprior) + E
[
DTV

(
ptarget(ckt

), pprior(ckt
)
)]
.

Applying Lemma A.4 and Lemma A.5 to Eq. (18) yields a bound of the correct form.

EDtarget

[
REMP (c

∗)
]
≤ EDtarget

[
REMP (c1:K)

]
+DTV

(
p(c1:K), pM

)
+ 1/M

≤ EDprior

[
Rπβ

(π̂; ρprior)
]
+ E

[
DTV

(
ptarget(ckt), pprior(ckt)

)]
+DTV

(
p(c1:K), pM

)
+ 1/M.

To make the DTV
(
p(c1:K), pM

)
term more interpretable as a VLM accuracy, we convert to a KL

divergence with Pinsker’s inequality [69]:

EDtarget

[
REMP (cPALO)

]
≤ EDprior

[
Rπβ

(π̂; ρprior)
]
E
[
DTV

(
ptarget(ckt

), pprior(ckt
)
)]

(19)

17

+
√

2DKL
(
p(c1:K), pM

)
+ 1/M. (20)

Since EDtarget

[
Rπβ

(π̂ | s0, ℓ, cPALO)
]
= Rπβ

(πPALO; ρtarget) , plugging Eq. (20) into Eq. (18) gives the
desired result:

Rπβ
(πPALO; ρtarget) ≤

[
Rπβ

(π̂; ρprior)
]

+ E
[
DTV

(
ptarget(ckt

), pprior(ckt
)
)]

+
√
2DKL

(
p(c1:K), pM

)
+ 1/M

+

√
M +

√
n log(Mn)

n
+ 1/K +N−2/K . (21)

Proof of Lemma A.2. Define {Xi}Hi=1 to be the unique index k such that i ∈ uk, and {X ′
i}Hi=1 to be

the unique index k such that i ∈ u′
k. We have

Pr
(∑K

k=1|uk ∩ u′
k| ≥ Hε

)
= Pr

(∑H
i=11{Xi = X ′

i} ≥ Hε
)

= Pr
(∑H

i=11{Xi ̸= X ′
i} ≤ H(1− ε)

)
. (22)

Now, we observe

Pr(Xi ̸= X ′
i) =

K∑
k=1

(
1− pXi

(k)
)
pX′

i
(k) (23)

= 1−
K∑

k=1

pXi(k)
2. (24)

Eq. (23) is concave in pXi
, and so is maximized when for any δpXi

and some λ,

λδpXi
(k) = −2

K∑
k=1

pXi
(k)δpXi

(k),

i.e., when pXi(k) = const. = 1/K for all k. Thus, we have

E
[
1{Xi ̸= X ′

i}
]
= Pr(Xi ̸= X ′

i) ≤ 1− 1/K.

Continuing from Eq. (22) with µ = E
[∑H

i=1 1{Xi ̸= X ′
i}
]
,

Pr
(∑H

i=11{Xi ̸= X ′
i} ≤ H(1− ε)

)
= 1− Pr

(∑H
i=11{Xi ̸= X ′

i} ≤ µ+ (H(1− ε)− µ)
)

≥ 1− exp

(
−2(H(1− ε)− µ)2

H

)
(Hoeffding [70])

≥ 1− exp

(−2H2
(
(1− ε)− (1− 1/K)

)2
H

)
= 1− exp

(
−2H

(
1/K − ε

)2)
. (25)

Taking the complement of Eq. (25) yields the desired result:

Pr
(∑K

k=1|uk ∩ u′
k| ≤ Hε

)
≤ e−2H(1

K −ε)2 . (26)

Proof of Lemma A.3. The statement follows from the ansatz

ε =
1

K
−

√
logN

NHK

18

Plugging in,

ε+ e−2H(1
K −ε)2 = N−2/K +

1

K
−

(logN

HKN

)1/2

≤ 1/K +N−2/K .

Proof of Lemma A.4. Recall the definition of the optimal PALO solution

c∗ = argmin
c∈M(s0,ℓ)

REMP(c). (27)

Now, noting regrets are bounded by 1 from Eq. (8), we have

EDtarget

[
REMP (c

∗)
]
= EDtarget

[
min

c∈M(s0,ℓ)
REMP(c)

]
= EDtarget

[(
p(c)

pM(c)

)
min

{c(i)}M
i=1∼pc1:K

[
REMP(c

(i))
]]

= EDtarget

[
min

{c(i)}M
i=1∼pc1:K

[
REMP(c

(i))
]]

+ EDtarget

[(
p(c)

pM(c)
− 1

)
min

{c(i)}M
i=1∼pc1:K

[
REMP(c

(i))
]]

≤ EDtarget

[
min

{c(i)}M
i=1∼pc1:K

[
REMP(c

(i))
]]

+ EDtarget

∣∣∣∣ p(c)

pM(c)
− 1

∣∣∣∣
≤ EDtarget

[
min

{c(i)}M
i=1∼pc1:K

[
REMP(c

(i))
]
+DTV

(
p(c1:K), pM(c1:K)

)]
= EDtarget

[
Pr

(
REMP(c1:K) < c(i) for {c(i)}Mi=1 ∼ pc1:K

)
+REMP(c1:K) +DTV

(
p(c1:K), pM(c1:K)

)]
= EDtarget

[
REMP(c1:K) +DTV

(
p(c1:K), pM(c1:K)

)]
+ 1/M.

Proof of Lemma A.5. We consider the empirical regret of π̃ using the true decomposition
u1:K , c1:K ∼ ptarget, for t ∼ Unif(1 . . . H) and kt defined as in Eq. (6):

EDtarget

[
REMP(c1:K)

]
= EDtarget

[1

H
√
dA

∑
τ∈Dtarget

min
u1:K

J (c1:K , u1:K , τ)
]

= EDtarget

[1

H
√
dA

∑
τ∈Dtarget

min
u1:K

K∑
n=1

∑
t∈un

∥∥at − π̃(st, cn)
∥∥2]

≤ Eun,cn∼Dtarget

[1

H
√
dA

∑
τ∈Dtarget

K∑
n=1

∑
t∈un

∥∥at − π̃(st, cn)
∥∥2]

≤ 1

H
√
dA

Eptarget

[K∑
n=1

∑
t∈un

∥∥at − π̃(st, cn)
∥∥2 +DTV

(
ptarget(cn), pprior(cn)

)]

= Eun,cn∼pprior

[1

H
√
dA

K∑
n=1

∑
t∈un

∥∥at − π̃(st, cn)
∥∥2]+ E

[
DTV

(
ptarget(ckt

), pprior(ckt
)
)]

= Rπβ
(π̂; ρprior) + E

[
DTV

(
ptarget(ckt

), pprior(ckt
)
)]
.

19

B Environment Details
We evaluate our method in a real-world tabletop manipulation setup. We use a 6DOF WidowX-250
robot interacting with various objects both inside and outside of our training distribution at 5 Hz.
We use one 640×480 RGB camera mounted on top of the model as set up in BridgeData [5]. When
computing observations we downsample images to 224× 224.

We evaluate our method in the following scenes, which include:

Sweep: This scene involves an object manipulation as well as sweeping task unseen in the Bridge-
Data’s initial training trajectories.
mint: Placing the mushroom in the pot, then sweep the mints on the right using the towel.
skittles: Instead of using mints and towel for sweeping, we use a swiffer and skittles instead.

Drawer: This scene involves using a drawer and perform manipulation within the space of the
drawer.
put in: Open the drawer, and then put a purple object (beet/sweet potato) inside the drawer.
pry away: A pot is stored inside the drawer space, and the robot must use a ladle to pry away the

pot within drawer.
Bowl: This scene involves object manipulation to a bowl and perform long-horizon or 6DOF ma-

nipulation.
salad: This task requires sequential object manipulation by putting a corn cob and a mushroom

in the bowl.
pouring: This task requires the robot to grasp a scoop and pour almonds inside the scoop into

the bowl.
Rotation: This scene involves rotating a spoon and a marker to fit into a white container not aligned

with the pen/marker, and naive pick-and-place will not correctly align the object into the con-
tainer.
spoon: Placing the spoon in the container placed on the left side of the table.
marker: Replacing the spoon with the marker and randomize location of the container while

being misaligned.

We summarize the evaluation tasks in Table 1.

Table 1: Task Breakdown
Scene Task Long-Horizon? 6DOF required? Instruction

Drawer
put in Yes Yes “put the beet toy/purple thing into

the drawer.”

pry away Yes Yes “pry out the pot in the drawer using
the ladle.”

Bowl
salad Yes No “make a salad bowl with corn and

mushroom.”

pour scoop No Yes “pour the contents of the scoop into
the bowl.”

Sweep

mints Yes No “sweep the mints to the right after
putting the mushroom in the bowl.”

skittles Yes No
“sweep the skittles into the bin after
putting the mushroom in the con-
tainer.”

Rotation
marker No Yes “put the marker into the box while

aligning it.”

spoon No Yes “put the spoon into the cleaner
while aligning it.”

20

C Training Details
We train on an augmented version of the BridgeDataV2 dataset [5], which features over 50k tra-
jectories with 72k language annotations. We algorithmically augment the dataset with low-level
instructions using heuristics designed over the proprioceptive states of the robot and incorporate
language context by parsing the language instruction using a language model. We use the Adam
optimizer [71] to minimize the loss function in Eq. (28).

Instead of naively looping through Algorithm 1, we batch our implementation with the exception
of the outermost for loop, thus reducing time consumption during optimization by a significant
margin via vectorization. We record an empirical time consumption of 470 seconds for our language
optimization module on computations ran on a V4 TPU module, in which only 200 seconds are
required for sampling 20000 different partitions to complete the optimization for all of the 15 sets of
language instructions. We save our optimal plans for future use, thus reducing overhead even more.

We encode both language instructions using a frozen MUSE model [63] before passing them into
the main ResNet with FiLM layers [64].

C.1 Hyperparameter Selection

We discuss the hyperparameters used in our method and baselines.

Policy Training We set our learning rate for our Adam Optimizer [71] to 3·10−4 and a dropout rate
of 0.1 in our policy head. We employ random resizing and cropping, contrast, brightness, saturation,
and hue for input images. We train our policy for 300,000 steps, in which we use the checkpoint
with the lowest validation MSE. The total training time takes 12 hours when trained on 4 TPU pods.

Language Decomposition Optimization During optimization, we sample M = 15 random in-
struction sets from GPT4-o, and we use N = 20, 000 sampling steps in order to find the best subtask
decomposition.

In order to batch across demonstrations, which have different trajectory lengths, we pad our trajecto-
ries to a certain length H (200 for long-horizon tasks, 150 for non long-horizon tasks). We sum the
squared difference between generated action and oracle action in evaluation, thus giving a consistent
error metric analogous to Eq. (8).

C.2 Baseline Details

We finetune an Octo-small [11] model that is trained on BridgeData [5] in order to perform few-shot
learning on the collected trajectories for the baseline in Table 2. We use an Adam optimizer [71]
with a learning rate of 3 · 10−4 and finetune our model’s action head for 5000 steps. We use the
hyperparameters set by Octo for the rest of the settings.

In order to perform tasks in long-horizon, we assign a language label for each task in order to trans-
plant semantic understanding from human into Octo. The same language instruction for PALO eval-
uation is also used for Octo finetuning.

D Augmentation Details
We train the policy by maximizing the likelihood of actions given high- and low-level instructions
in the dataset Dprior:

J (θ) = EDprior

[
∥at − πθ

(
st, (c

H ,0)
)
∥2 + ∥at − πθ

(
st, (0, c

L)
)
∥2 + ∥at − πθ

(
st, (c

H , cL)
)
∥2
]

(28)

where s1 . . . sH ∈ S , a1 . . . aH ∈ A, cL, cH ∈ L ∪ {0}, and θ are the parameters of the policy
network, 0 is an additional point representing the absence of a high- or low-level instruction, which
will be represented as an embedding vector of zero during training, and τ = (s0, a0, . . . , sH , aH) is
a trajectory sampled from the dataset.

This objective encourages the policy to learn to follow instructions at both levels of abstraction,
marginalizing over missing instructions. We chunk actions within training data into segments of

21

length 4 and evaluate the low level instruction within these segments and append them into the
training data.

D.1 Heuristics for Low-Level Language Augmentation

We augment the dataset with low-level instructions using several heurisitcs.

Proprioception. We use standard deviation of each action against the metadata of BridgeData [5]
and determine how to describe the proprioception of the label. We determine the largest direction
in which the gripper is moving (up, down, left, right, forward, backward) and the orientation it is
rotating (up, down, left, right, clockwise, counterclockwise), and determine whether the movement
is unambiguous enough by checking the largest z-score in translation and rotation. We then combine
the movement as well as the keywords extracted to form language primitive commands.

Target Object. We identify the target object using a prompt heuristic to be fed into GPT3.5-Turbo
[9] by taking advantage of the fact that BridgeData consists of mainly object manipulation data. We
extract two keywords: the object to be manipulated and the destination of the object, based on the
fact that much of BridgeData is focused on object manipulation. The precise prompt can be found
at Appendix F

Data Filtering. We filter low-level instruction on two occasions: when the movement itself is am-
biguous and when the language model gives inconsistent results. We check the former by looking
up the norm of the translation and the norm of rotation, and we check the latter by using regular ex-
pression to see if the result was against the desired format and manually filtering out some common
keywords of inadmissible GPT query. On the former occasion, we use an empty string as the low
level instruction, and on the second occasion, we use only proprioceptive information for low-level
instruction.

D.2 Additional High-Level Language Augmentation

We additionally augment the high-level language annotations by generating context-free rephrasings
with GPT-3.5 [9]. For each trajectory with crowdsourced language annotations in the BridgeData
v2 dataset, we generate 5 such augmented language strings following the approach of Myers et al.
[36].

E Ablation Details
We ablate our experiment in progressive manners, going from full implementation to using only the
barebone hierarchical policy network.

• PALO w/o high level instruction: while running PALO, we derive both high and low level in-
struction sets. However, during inference on robot, we mask out the high level instruction and
feed in zero embeddings.

• PALO w/o low level instruction: mask out the low level instruction and replace them with zero
embeddings during inference.

• Fixed Time During Optimization: for each trajectory that has corresponding length
H1, H2, . . . ,Hi, we choose fixed ui = [Hi

k , 2Hi

k , . . . , (k−1)Hi

k] during optimization. We im-
plement no u sampling, which reduce PALO into an argmax operation.

• Zero-Shot Plan Generation: instead of sampling 15 plans, we sample only one plan from VLM
and examine the behavior of the robot using that specific plan.

• No VLM Guidance: We use only ℓ as our high level instruction, and mask out low level instruction
with zero embeddings during inference.

F Prompting Methods
We employ a keyword decomposition prompt in our augmentation method and a planning prompt
to generate VLM outputs. They are listed below:

Keyword Decomposition Prompt

22

User: "You are presented with a text for high level instruction for a
robot , and you need to extract keywords in the task description
text.

In this instruction , the first keyword is the object being moved , and
the second keyword , if applicable , what is the moving taking this
to (either another object or a location) within the instruction.

Only return the first and second keyword , and they should be separated
by a comma. If the instruction is in another language , write your
response in English.

For example , if the text instruction says "Pick up the silver lid on
the left to the middle of two burners", return "silver lid , middle
of two burners ".

Or if the instruction says: "Move the object to the top middle side of
the table.", your response should be "object , top middle side of

the table".
Or if the instruction says : "Move the red greenish thing on the towel

to the right.", return "red greendish thing on the towel , the
right".

Try your best to find the two key phrases , but if you can ’t find the
second keyword within the instruction sentence , write "N/A".

For example , if the instruction is "Move the pot lid.", the response
should be "pot lid , N/A".

There might be some other description regarding confidence at the end ,
you are safe to ignore it.\n The specific task description for

you to analyze is: \n {instruction} \n "

Planning Prompt

User: Here is an image observed by the robot in a tabletop robot
manipulation environment. The gripper situated at the top of the
center of table and perpendicular to it.
Now plan for the list of subtasks and skills the robot needs to

perform in order to {instrs }.

Each step in the plan can be selected from the available skills
below:

*movement direction:
*forward. This skill moves the robot gripper away from the

camera by a small distance.
*backward. This skill moves the robot gripper towards the

camera by a small distance.
*left. This skill moves the robot gripper to the left of the

image by a small distance.
*right. This skill moves the robot gripper to the right of the

image by a small distance.
*up. This skill moves the robot gripper upward until a safe

height.
*down. This skill moves the robot gripper downward to the

table surface.

*rotation direction:
*left. This skill tilts the gripper to an angle to the left.
*right. This skill tilts the gripper to an angle to the right.
*down. This skill tilts the gripper to an angle facing up.
*up. This skill tilts the gripper to an angle facing down.
*clockwise. This skill rotates the gripper and the objcet it

is holding clockwise.
*counterclockwise. This skill rotates the gripper and the

object it is holding counterclockwise.

*gripper movement:
*close the gripper. This skill controls the robot gripper to

close to grasp an object.

23

*open the gripper. This skill controls the robot gripper to
open and release the object in hand.

You may choose between using one of movement direction. rotation
direction , or gripper movement.

If you were to choose to use movement direction , you may use one
or two directions and include a target object , and you should
format it like this:

"move the gripper x towards z" or "move the gripper x and y
towards z" where x and y are the directions and z is the
target object.

You also must start your command with "move the gripper ".
Therefore , instead of saying something like "down" or "up",
you should phrase it like "move the gripper down" and "move
the gripper up". Make sure to include at least one direction
in your command since otherwise this command format won ’t make
sense.

If you were to choose to use gripper movement , you should format
the command as "close the gripper to pick up x" or "open the
gripper to release x", where x is the target object.

You may discard the target object if necessary. In that case use "
close the gripper" or "open the gripper ".

If you think the gripper is close to the target object , then you
must choose to use gripper movement to grasp the target object
to maintain efficiency.

If you were to choose gripper rotation , you should format the
command as "rotate the gripper x", where x is the target
rotation direction. You need to make sure that in pouring
tasks , the opening of the container is aligned with the pot.

For example , if the object is aligned vertically but you want it
to align it horizontally , then you should call "rotate the
gripper counterclockwise ". If you want to tilt the object in
the gripper to pour it , you should call "rotate the gripper
left"

Pay close attention to these factors:
*Which task are you doing.
*Whether the gripper is closed.
*Whether the gripper is holding the target object.
*How far the two target objects are. If they are across the table ,

then duplicate the commands with a copy of it.
*Where the gripper is. After the end of each subtask , it is

reasonable to assume that the gripper will not be at where it
originally was in the image , but somewhere close to the last
target object.

Especially pay attention to the actual direction between the
gripper and the target object. Remember that the robot ’s angle
is roughly the same as the camera ’s angle.

To determine whether the gripper should move forward or backward ,
look into the edge of the table. If the target object is
closer to the edge of the table that is near the top of the
image , you should move forward , and if it is closer to the
edge that is near the bottom of the image , you should move
backward.

At the end of each subtask , you need to use the skill "move the
gripper back to neutral. This will move the gripper back to
the original position of the image after completing the task.

Start by looking at what objects are in the image , and then plan
with the direction of the objects in mind. The tasks should be
completed sequentially , therefore you need to consider the

24

“pry out the pot using the ladle”

move the
gripper right
towards the
ladle

move the gripper
down

close the gripper
to pick up the
ladle

Move the
gripper forward
and left towards
the drawer

move the
gripper left

move the
gripper down
towards the
pot

move the gripper
backward

ℓ =

cH
1:K =

cL
1:K =

Pick up the ladle Move the ladle to the drawer Pry out the pot using
the ladle

open the gripper

t
Figure 11: An execution of our method on the task “Pry out the pot using the ladle.”

position of the gripper after each task before planning the
next task.

You should return a json dictionary with the following fields:
- subtask: this should be the key of the dictionary. It should

contain the only the verbal description of the subtask the
robot needs to perform sequentially in order to finish the
task , and they should be ordered in the same way the task is
completed.

- list of skills: this should be the value of the dictionary. It
should be a list of skills the robot needs to perform in order
to finish the corresponding subtask.

Be concise , and do not return any other comments other than the
dictionary mentioned above. Do not put "subtask: " or "lsit of
skills: " in the key and value of the dictionary you generate

. Remember only the description and list should be returned.

G Execution Breakdown
In this section, we provide additional qualitative results for PALO.

G.1 Inference Details

During inference, we chunk each low-level instruction into length 8 intervals, switching to the new
set of low-level (and high-level, if applicable) after these 8 steps. We chose a fixed interval instead of
a dynamically allocated one due to the policy choosing to mostly stay put after finishing the action
prescribed by the low-level instruction.

G.2 Success Cases

We show the full breakdowns of success cases here. Fig. 11 and Fig. 12 gives detailed description
of the robot’s action primitives generated by PALO during inference.

G.2.1 Full PALO Failure

While PALO is robust in generating language primitives that help achieve the task, it does not guar-
antee a successful execution of the policy as shown in Fig. 13. PALO can fail when the underlying
policy fails to execute a low-level motion, after which the robot may not be able to recover and
complete the task.

25

“pour the contents of the scoop into the bowl”

Move the gripper
down and right
towards the
scoop

ℓ =

cH
1:K =

cL
1:K =

ℓ

Move the gripper
down

Close the gripper
to pick up the
scoop

Move the gripper
up and left
towards the bowl

Rotate the
gripper
counterclockwise

Rotate the
gripper left

Move the gripper
right away from
the bowl

Open the gripper
to release the
scoop

t

Figure 12: An execution of our method on the task “pour the contents of the scoop into the bowl.”.
Note that the high level instruction is ℓ itself, as the best-proposed language decomposition does not
create additional subtasks.

“put the turnip in the drawer”

move the
gripper down
towards the
drawer handle

close the gripper
to pick up the
drawer handle

move the gripper
backward to
open the drawer

open
the
gripper

move the gripper right
and down towards the
purple thing

close the
gripper to pick
up the purple
thing

move the gripper
left and forward
towards the
drawer

move the
gripper down
towards the
drawer

open the gripper
to release the
purple thing

ℓ =

cH
1:K =

cL
1:K =

open the drawer pick up the purple thing move the purple thing
to the drawer

place the purple thing
in the drawer

t

Figure 13: Failure in execution: while the robot completed every subtask correctly up until the last
subtask, it did not achieve it due to errors within the policy.

G.2.2 Ablation Failures

When we ablate the components of PALO, we begin to see more critical failures. Fig. 14 demon-
strates a case of grounding failure when cH is masked out, i.e., when PALO loses half of the opti-
mized task decomposition.

H Evaluation Results
We present detailed results of our method across four tasks in the studied scenes in Table 2. We also
present ablation results in Table 3. We evaluate each entry of the result for 10 trials, shifting the
starting location of both target and background objects randomly.

I Code
We make our code publicly available at https://github.com/vivekmyers/palo-robot.

26

https://github.com/vivekmyers/palo-robot

“make a salad with corn and mushroom”

[MASKED]

ℓ =

cH
1:K =

cL
1:K =

… …

… …
Move the gripper
right and down
towards the
mushroom

Close the gripper
on the mushroom

…

Move the gripper
up

Move the gripper
forward and left

st
Figure 14: In this instance, we mask out the high level instructions, and the policy is only conditioned
on the low-level instructions. We see that the low-level instruction “move the gripper forward and
left.” causes the robot to overshoot its trajectory and causes failure in execution.

Table 2: Method Comparisons
Scene Task PALO RT-2-X FT-Octo Octo GRIF VINN FT-LCBC LCBC

Drawer put in 0.7 0.0 0.0 0.2 0.1 0.0 0.3 0.1
pry away 0.6 0.2 0.2 0.1 0.0 0.1 0.0 0.0

Bowl salad 0.7 0.5 0.0 0.3 0.4 0.0 0.6 0.0
pour 0.5 0.1 0.2 0.3 0.0 0.0 0.0 0.0

Sweep mints 0.7 0.3 0.1 0.2 0.0 0.0 0.2 0.0
skittles 0.8 0.4 0.0 0.4 0.3 0.0 0.3 0.2

Rotation marker 0.9 0.4 0.0 0.1 0.3 0.4 0.4 0.0
spoon 0.8 0.2 0.1 0.1 0.1 0.5 0.2 0.0

Average 0.71 0.26 0.10 0.21 0.15 0.13 0.25 0.08

Table 3: Ablations

Scene Task PALO No cH No cL Fixed Times Zero-shot No VLM

Drawer put in 0.7 0.2 0.4 0.4 0.3 0.0
pry open 0.6 0.4 0.2 0.1 0.4 0.1

Bowl salad 0.7 0.4 0.5 0.4 0.2 0.0
pour scoop 0.5 0.1 0.4 0.4 0.2 0.0

Sweep mints 0.7 0.5 0.3 0.5 0.0 0.0
skittles 0.8 0.7 0.2 0.5 0.4 0.2

Rotation marker 0.9 0.6 0.3 0.3 0.1 0.3
spoon 0.8 0.6 0.1 0.2 0.3 0.2

27

	Introduction
	Related Work
	Policy Adaptation via Language Optimization
	Notation
	Problem Statement
	Task Decomposition with Language
	Few-Shot Adaptation through Language Decomposition
	Learning Composable Instruction-Following Primitives
	Analysis of PALO
	System Details

	Experiments
	Experimental Setup
	Baselines
	Ablations
	Scaling with Number of Target Demonstrations
	Qualitative Results

	Discussion
	Proof of thm:regretbound
	Environment Details
	Training Details
	Hyperparameter Selection
	Baseline Details

	Augmentation Details
	Heuristics for Low-Level Language Augmentation
	Additional High-Level Language Augmentation

	Ablation Details
	Prompting Methods
	Execution Breakdown
	Inference Details
	Success Cases
	Full PALO Failure
	Ablation Failures

	Evaluation Results
	Code

